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SUMMARY

The problem of the interaction between Ekman’s classical boundary layer and that induced by a thermally non-
homogeneous site shows that the latter is strongly linked to the order of magnitude of the horizontal scale of the
site.

Our purpose is the analysis of the local interaction equations (Boussinesq equations) starting from a triple-deck
model. This analysis yields a system of quasi-linear equations for the viscous lower deck. The linear theory of
this system shows that the thermal non-homogeneity has a significant influence on the Ekman boundary layer
flow owing to the interactive nature of the triple-deck structure. The numerical solution of the quasi-linear
system confirms to a large extent this influence. The numerical results are given in graph form.# 1997 by John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this article the interaction between an Ekman boundary layer and a local circulation induced by a
thermally non-homogeneous site is studied. A generalization of the work of Sykes1 is thus obtained.
This problem is concerned more particularly with meteorology. As a matter of fact, if we wish to
regionalize synoptic prediction, i.e. to be able to do local prediction, we have, among other things, to
elucidate how a site of horizontal scaleL perturbs the Ekman layer. The consistent formulation of this
problem of the interaction between the Ekman boundary layer and that induced by a thermally non-
homogenous site turns out to be strongly linked toL, the order of magnitude of the site. We notice for
L � 103 m that an auto-inductive coupling triple-deck scheme developed independently by
Stewartson and William2 and Neiland3 has to be used. According to Zeytounian,4 for the local
formulation we may then neglect the effect of the Coriolis force and proceed to the Boussinesq
approximation.5

We begin by describing the triple-deck model obtained by Zeytounian6 and analysing the equations
of the upper layer and the conditions for matching with the viscous lower deck. Then we analyse the
linearization of the viscous lower-deck equations. Finally we develop the numerical solution of the
non-linear problem and present the results in graph form.
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2. TRIPLE-DECK SCHEME

In the following we consider a two-dimensional stationary problem. This is justified whenL is of the
order of a few kilometres. We do not take into account the site. Our main purpose is to elucidate to
what extent the Ekman layer profile is perturbed by the presence of a thermally non-homogeneous
site on theX -axis betweenX� 0 andX� L as shown in Figure 1.

We can write the following local interaction problem by using the Boussinesq approximation
according to Zeytounian:5
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Hereb is a small perturbation parameter linked with the Ekman boundary layer, whose expression is
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Figure 1. Schematic diagram of flow geometry and co-ordinate system
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are the local Reynolds and Rossby numbers respectively, based onL andn0, with n0 the kinematic
viscosity of the atmosphere. We have
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p* and y* are the pressure and temperature perturbations respectively andd andL are similitude
parameters of order unity.F�x� is given: it is the temperature distribution on the surface of the local
site. Finally,U1 is the Ekman longitudinal speed profile in the non-dimensional form
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andg is a constant equal to the adiabatic index. Whenb! 0, the local problem (1)–(5) consists of
the study of three vertical scales, at least in the self-inductive coupling scheme corresponding to
m � 5 (Figure 2). The valuem � 5 is the same as the one used by Smith7 in his study of the linear
flow over a small ‘hump’ on a plane plaque. This work has been generalized to the three-dimensional
case by Smithet al.8 with m � 5. Finally, Sykes1 has used the preceding results to analyse the
stratification effects on a Boussinesq fluid in the boundary layer flow over a small mountain whose
spread is of the order of 1�5 km and maximum height 60 m.

Middle deck

In this deck we have the asymptotic representation

u* � U1��z� � b�u � O�b2
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where�z � ~z=b. The components�u and �w satisfy the classical system
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Figure 2. Definition sketch of asymptotic regions and stretched vertical co-ordinates for triple-deck analysis
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whose solution is

�u � A�x�
dU1

d�z
; �w � ÿ

dA

dx
U1��z�; �13�

where the functionbA�x� should be interpreted as a thickness displacement which, as a matter of fact,
generates the pressure perturbation.

Lower deck
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3ŵ� O�b4�;
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2
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�14�

Substituting these expressions in (1)–(5) and retaining only comparable terms, the following system
is obtained:6
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@ŷ

@x
� ŵ
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with the boundary conditions

û � ŵ � 0; ŷ � LF�x�; 04 x4 1; at z* � 0;

û ! ẑ; �ŵ;P; ŷ� ! 0; for x !ÿ1;
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dx
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The strong singular self-induction arises because the problem (15)–(18) to be solved in the lower
viscous layer does not acceptP�x� as data known prior to the resolution (as is the case in classical
boundary layer problems). It has to be calculated simultaneously with the velocity componentsu and
w and the temperature perturbationy

It should be emphasized, however, that this pressure perturbationP�x� is not completely arbitrary.
It is connected to the functionA�x� in a manner determined by the analysis of the upper deck flow.

Upper deck

In this deck we formulate the asymptotic representation
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2
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2
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We then obtain the following linear system for~u; ~w; ~p and ~y:
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Eliminating all these functions except~p�x; ~z� in (21)–(24) yields the following Helmholtz equation
for ~p:
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At ~z � 0 the solution (25) must verify
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If p*�k; z� denotes the Fourier transform ofp�x; z�, i.e.

p*�k; z� �

�1

ÿ1

p�x; z�eÿikxdx;

we obtain the solution of (25)–(27) as
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From (27) and (28) we obtain the following relation betweenA*�k� andP*�k� in the Fourier plane:
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3. LINEAR THEORY

First note that equations (15)–(19) and (31) are almost identical with those obtained by Sykes1 in
order to study the effects of stratification due to the boundary layer flow over a small mountain. The
only differences are that in equations (15)–(19) there is no effect of the normal velocity componentv

and that the supplementary term governing the temperature
� ẑ
1
�@ŷ=@x� dẑ in equation (15) describes

the quantity of motion.
More precisely, problem (15)–(19) with constraint (31) is equivalent to Sykes’ problem withŷ � 0,

which is equivalent to assumingL � 0. In this case we have to introduce at least a contour and write
the adherence conditions onz � h�x�, taking into account the parameter in the formZ � h0=L � b

2,
whereh0 � max jhj. If no hypothesis is made on the similitude parameterL, problem (15)–(19) with
(31) is still non-linear and can only be solved numerically.

The linearization of system (15)–(19) with (31) consists of assumingL� 1 and finding the
solution in the form

û � ẑ� Lu � O�L2�; �ŵ; ŷ;A;P; � � L�w; y;A;P�: �32�

Substituting this in (15)–(19) and (31) and retaining only terms of his first order inL, we obtain the
linear system (after deleting the ‘hats’)
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with the boundary conditions

u � w � 0; y � F�x�; 04 x4 1; at z � 0;
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To solve problem (33)–(36), we shall assume thatd � 1 andPr � 1.
Using Fourier transform with respect tox, we obtain the following equation for the temperature:
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whose general solution is

u*�k; z� � C�k�
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Using the other boundary conditions, we obtain the expressions for the pressureP*�k� and the
displacement thicknessA*�k�:
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with

a � �ÿ3Ai�0��3=4 � 0�8272; D � �3Ai�0�a4=3�ÿ1 � 0�382;

wherem is determined by relation (30).

Results

The asymptotic behaviour ofA�x� for large values ofx, i.e. for x � 1, is given by

A�x� �
D

g
F�x�: �44�

Figures 3 and 4 represent the graphs ofP�x� and A�x� computed numerically using FFT for a
temperature profile defined by

F�x� � �1 ÿ x2�2; jxj < 1;
0; jxj5 1;

�

�45�

where we chosem0 � 0�0 and 2�0

4. NUMERICAL MODEL

When L � O�1�, system (15)–(19) with constrain (31) is non-linear and can only be solved
numerically. We apply the finite difference method with a Crank–Nicolson scheme, using a non-
linear relaxation7,9 for each space step and an initialization of the functionA�x� starting from the
linear theory. This method is the same as used by Sykes1 for the boundary layer flow over hills. The
computation ofui�1; j and yi�1; j at the point�xi�1; zj� is done in three stages, using the values of
uiÿ1; j; ui; j; yiÿ1; j andyi; j which are known forj � 1; . . . ;N .

The computations are almost identical with those of Sykes1 and we indicate only the approxi-
mation of the terms wherey intervenes.
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Stage 1

Starting from equation (15), we elaborate an explicit method to compute~ui�1=2; j, a first estimate of
the speed. The termH � �1=g�

� z
1
�@y=@x� dz is approximated by trapezoidal rule, using a backward

difference formula for@y=@x, i.e.
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1
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� �

: �46�

Figure 3. Pressure perturbation from linear case withm0 � (3a) 0�0 and (3b) 2�0
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The value of~ui�1=2; j which we obtain is used to compute a first estimate~yi�1=2; j of the temperature
starting from (18):
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Pr

1
dz2

� �

~yi�1=2; j �
ui; j

dx
yiÿ1=2; j ÿ wi; jÿ1=2 �
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yi; j�1 ÿ yi; jÿ1

2dz

�
1
dz2

�yi; j�1 ÿ yiÿ1=2; j � yi; jÿ1�; �47�

Figure 4. Displacement from linear case withm0 � (4a) 0�0 and (4b) 2�0
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where the vertical speed is computed from the continuity equation

wi; jÿ1=2 �
dz

dx

Pjÿ1

r�2
�uiÿ1=2; j ÿ ~ui�1=2; j�: �48�

Stage 2

Here the values of~ui�1=2; j and ~yi�1=2; j are used to obtain first estimates of the speed,~ui�1; j, and the
temperature,~yi�1; j, at the point�xi�1; zj�. This step and the previous one are identical. It is sufficient
to replacei by i � 1=2.

Stage 3

In this last stage an explicit scheme and the values of~ui�1; j and ~yi�1; j are used for calculatingui�1; j

andyi�1; j. Having computed the termui�1; j, we determineyi�1; j. The temperature equation can then
be put in the matrix form

Cy � D; �49�

y � �yi�1;2; . . . ; yiÿ1;Nÿ1�; �50�

whereC is a tridiagonal matrix.
We end by determining the pressure field and the new displacement fieldA starting from (31). The

adjustment of the displacement fieldA is given by

Anew
i � �1 ÿ a�Aold

i � aAcalc
i ; �51�

where04a < 1.9 The iteration is complete when

max
i
jAcalc

i ÿ Aold
i j < 5 � 103 max

i

jAold
i j: �52�

5. ANALYSIS OF NUMERICAL RESULTS

In this section we present the numerical results for a temperature profile given by

F�x� � L�1 ÿ x2�2; jxj < 1;
0 jxj5 1:

�

�53�

Figure 5 illustrates the pressure perturbation and displacement perturbation for various values of
the parametersL andm0. We notice that the graphs ofP�x� above the thermally non-homogeneous
site are concentrated in the domainjxj4 1 and that the minima are negative and located on the same
straight line. The pressure of the thermally non-homogeneous site in the flow produces a separation
which varies in a regular way. This phenomenon is the same as that observed by Sykes.1 As a matter
of fact, these results are the same as those by linear analysis.

Figure 6c presents the perturbation of the temperaturey�x0; z� for x0 fixed in �ÿ1; 1�; m0 � 3�0 and
L � 2�0. The various plots obtained constitute a good illustration that the temperature profile is
perturbed within the thermally non-homogeneous site. Figure 6c shows the temperature perturbation
with respect toz for values ofx0 betweenÿ0�30 and 0�30 with a step of 0�12. Figures 6a and 6b
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present the temperature perturbation as a function ofx andz for different values of the parametersL
andm0.

All these figures illustrate very clearly the effects of a thermally non-homogeneous site on the basic
flow.

6. CONCLUSIONS

The linear analysis allows the initialization of the iterative process utilized for the numerical solution
of system (15)–(18) when the parameterL � O�1�. The results show that the presence of a thermally
non-homogeneous site has a significant influence on the flow of Ekman’s classical boundary layer
owing to the interactive nature of the triple-layer structure. It should also be noted that the results
tally with those obtained by Sykes1 wheny � 0 andm � 5.

Figure 5. Pressure perturbation and displacement perturbation from numerical solution with (5a, 5aa)L � 1�0; m0 � 2�0, (5b,
5bb)L � 1; m0 � 3�0, (5c, 5cc)L � 2�0; m0 � 2�0 (5d, 5dd) andL � 2�0; m0 � 3�0 for dx � 0�06; dy � 0�08;M � 256 and

N�60
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Figure 6a,b. Three-dimensional temperature perturbation from numerical solution with (6a)L � 2�0; m0 � 3�0 and (6b)
L � 3�0; m0 � 2�0 for dx � 0�06; dy � 0�08;M � 256 andN�60

Figure 6c. Curves of temperature perturbationy�x0; z� for fixed x0 � ÿ0�30; . . . ; 0�30 with respect toz, with L � 3�0 and
m0 � 2�0
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